Sustainability Report 2013/14
Climate Change and the Environment
This section summarizes some of the technologies we are using to improve the fuel economy of traditional gas and diesel engines. These include advanced engine and transmission technologies, weight reductions, and improvements to vehicle subsystems.
The centerpiece of our near-term fuel-economy improvement efforts is the EcoBoost engine, which uses turbocharging and direct injection along with reduced displacement to deliver significant fuel-efficiency gains and CO2 reductions, relative to larger displacement engines, without sacrificing vehicle performance.
EcoBoost offers comparatively better value than many other advanced fuel-efficiency technologies. Due to its compatibility with most of the gas-powered vehicles we produce, we are able to offer EcoBoost’s fuel-economy benefits throughout our product lineup more quickly and to a greater number of our customers. Our rapid deployment of EcoBoost in high volumes across a wide array of our vehicle nameplates is also helping us make a dramatic step forward in CO2 emission reductions.
Ford initially introduced the EcoBoost engine in 2009. Since then we have produced more than 2 million EcoBoost-equipped vehicles globally, responding to strong consumer demand for the technology. By the end of 2013 we offered EcoBoost engines on 15 North American nameplates. The engine is now available on 90 percent of our North American nameplates and nearly 80 percent of our European nameplates. Also, we continue to migrate EcoBoost engines to our other regions.
All told, we have introduced or announced seven EcoBoost engine displacements with multiple derivatives for specific vehicles and markets, as follows:
These EcoBoost engines illustrate Ford’s plans to use smaller-displacement, boosted engines to deliver improved fuel economy and performance throughout our vehicle lineup. As EcoBoost is a key element of our long-term powertrain strategy, we will continue to improve its efficiency and vehicle application potential through the further development of supporting advanced technologies.
We have adopted fuel-efficient six-speed transmissions across our product portfolio. We are now improving the performance and operating efficiency of all our transmissions by optimizing their operation with EcoBoost engines and further reducing parasitic losses such as mechanical friction, and extraneous hydraulic and fluid pumping. We are also developing more advanced transmission concepts to support additional fuel-efficiency improvements and vehicle performance benefits. For example, in 2013 we announced that we will jointly develop with General Motors an all-new generation of advanced-technology nine- and 10-speed automatic transmissions for cars, crossovers, SUVs and trucks.
The nine- and 10-speed transmissions we are developing will improve fuel economy by up to 5 percent over six-speed gear boxes, depending on the application. In addition, they provide better acceleration, smoother shifting and a quieter driving experience.
We have completed our migration to six-speed gearboxes in North America and Europe. We plan to start deploying the next-generation nine- and 10-speed transmissions worldwide in a few years.
Electric power-assisted steering (EPAS) uses a small electric motor instead of conventional hydraulic systems to assist steering.
EPAS typically will reduce fuel consumption and decrease carbon dioxide emissions by up to 3.5 percent over traditional hydraulic systems, depending on the vehicle and powertrain application. On the 1.4L Duratorq® diesel Ford Fiesta, for example, which is available in Europe, EPAS provides a 3 to 4 percent improvement in fuel efficiency compared with a hydraulic-based power steering system. By combining EPAS with aerodynamic improvements, we improved the mileage of this vehicle by approximately 8 percent compared to the previous model year. These fuel efficiency improvements – and associated reductions in CO2 emissions – help us deliver vehicles that qualify for lower emissions-related taxation brackets in some countries. EPAS also enables other advanced technologies such as “pull drift” compensation, which detects road conditions – such as a crowned road surface or crosswinds – and adjusts the EPAS steering system to help the driver compensate for pulling and drifting. EPAS also enables Active Park Assist, which helps drivers to parallel park.
We already offer EPAS in the Ford Explorer, F-150, Mustang, Fusion, Flex, Taurus and Escape and the Lincoln MKS, MKT and MKZ Hybrid in North America; the Ford C‑MAX, Focus, Focus ST and Fiesta in North America and Europe; and the Ford Ka and Kuga in Europe. EPAS is also used in all of our new electrified vehicles.
“Start-Stop” technology shuts down the engine when the vehicle is stopped and automatically restarts it before the accelerator pedal is pressed to resume driving. Start-Stop technology includes sensors to monitor functions such as cabin temperature, power supply state and steering input, so that vehicle functioning remains exactly the same to the driver as when the engine remains on continuously. If the system senses that a vehicle function has been reduced and will negatively impact the driver’s experience, the engine will restart automatically.
This technology maintains the same vehicle functionality as that offered in a conventional vehicle, but saves the fuel typically wasted when a car is standing and running at idle. Savings vary depending on driving patterns. On average, it improves fuel efficiency by 3.5 percent, but it can improve fuel efficiency even more in city driving. The technology can also reduce tailpipe emissions to zero while the vehicle is stationary – for example, when waiting at a stoplight.
In the U.S., we introduced the technology on the all-new 2013 Ford Fusion with 1.6L engine and automatic transmissions. In 2014, it is available in the U.S. on the Ford Fusion with 1.5L EcoBoost engine. In Europe, Auto Start-Stop is already standard on the Ford Ka and certain versions of the Mondeo, S‑MAX, Galaxy, Focus, C‑MAX and Grand C‑MAX. By 2016, 90 percent of our vehicle nameplates globally will be available with Auto Start-Stop.
We are also working to improve fuel economy by decreasing the weight of our vehicles – in particular by increasing our use of unibody vehicle designs, lighter-weight components and lighter-weight materials.
We are using lightweight materials, such as advanced high-strength steels, aluminum, magnesium, natural fibers, and nano-based materials to reduce vehicle weight. And, some of our advanced engine and transmission technologies, such as EcoBoost® and our dual-clutch PowerShift transmissions, further reduce overall vehicle weight.
In general, reducing vehicle weight reduces fuel use. To achieve our fuel-efficiency goals, we need to reduce the weight of our vehicles by 250 to 750 pounds, without compromising vehicle size, safety, performance or customer-desired features. Weight reductions alone may have relatively small impacts on fuel economy. By itself, a 10 percent reduction in weight results in approximately a 3 percent improvement in fuel efficiency. However, if vehicle weights can be reduced even more substantially, it becomes possible to downsize the powertrains required to run the vehicle. Weight reductions combined with powertrain rematching not only improves fuel economy, but helps maintain overall performance (compared to a heavier vehicle with a larger engine).
Many lightweight materials also have benefits beyond fuel-efficiency gains. To learn more about the benefits of natural fiber materials, please see the Sustainable Materials section.
The all-new 2015 Ford F-150 represents our most extensive use of lightweight materials ever. Overall, this truck is up to 700 pounds lighter than the outgoing model thanks to extensive use of high-strength steels and aluminum alloys. This significant weight reduction not only results in better fuel economy, it also allows the new F-150 to tow more, haul more, and accelerate and stop more quickly. To accomplish this weight reduction, we increased the use of high-strength steel in the all-new Ford F-150 frame from 23 percent to 77 percent to create a pickup frame that is stronger, more durable and structurally more rigid than the previous generation F-150, while saving up to 60 pounds of weight. The F-150’s body also uses new applications of aluminum alloys, which not only reduce weight but also improve the dent resistance and overall durability of the truck body. The specific materials used were carefully tested and analyzed based on their durability, overall performance, and life cycle environmental impact. For more information on our use of life cycle analysis in choosing materials for this vehicle, please see the Life Cycle Analysis section. For more detail on our development of this vehicle and what it means to our company, please see our F-150 case study.
Other examples of our use of lighter-weight materials in a range of vehicles and parts applications, include:
Ford researchers are also investigating additional new lightweight materials. For example, we are investigating and developing:
Ford is also working to understand the health and safety issues that may be posed by nano-materials. Ford has joined with other automakers under the U.S. Council for Automotive Research umbrella to sponsor research into nano-materials’ potential impact on human health and the environment. This research has addressed many health- and environment-related questions so that we can focus our nano-materials research and development in areas that will be most beneficial.
Electrical systems are another area in which we are making progress. By reducing vehicle electrical loads and increasing the efficiency of a vehicle’s electrical power generation system, we can improve fuel efficiency. Our Battery Management Systems (BMSs), for example, control the power supply system (in particular the alternator) to maximize the overall efficiency of the electrical system and reduce its negative impacts on fuel economy. This is accomplished by maximizing electricity generation during the most fuel-efficient situations, such as vehicle deceleration. In less fuel-efficient situations, the alternator’s electricity generation is minimized to conserve fuel.
BMSs have already been launched globally on a majority of our vehicle platforms. We will continue to implement BMSs on remaining vehicles and will continue to optimize its functionality to further improve benefits. We have also introduced more efficient alternators, which improve fuel economy.
Aggressive Deceleration Fuel Shut-Off (ADFSO) allows fuel supply to the engine to be shut off during vehicle deceleration and then automatically restarted when needed for acceleration or when the vehicle’s speed approaches zero. This advancement builds on the Deceleration Fuel Shut-Off technology available in our existing vehicles by extending the fuel shutoff to lower speeds and more types of common driving conditions, without compromising driving performance or emissions.
This improved fuel shutoff technology will increase fuel economy by an average of 1 percent. An additional benefit is increased deceleration rates, which should extend brake life and improve speed control on undulating roads.
Starting in 2008, ADFSO was implemented on the Ford Flex, F-150, Expedition and Escape and the Lincoln MKS and Navigator. We are continuing to implement it as we bring out new vehicles. The ADFSO technology will be a standard feature in all of our North American vehicles by 2015, and we will continue to expand implementation globally.
Active Grille Shutter technology is one of our key aerodynamics improvements. It reduces aerodynamic drag by up to 6 percent, thereby increasing fuel economy and reducing carbon dioxide (CO2) emissions. When fully closed, the reduction in drag means that the Active Grille Shutter can reduce CO2 emissions by 2 percent.
We implemented Active Grille Shutter technology first on our European vehicles. In the U.S., we have implemented it on the 2012 Ford Focus and Edge, the 2013 Ford Escape and the all-new 2013 Ford Fusion.
Smaller vehicles provide consumers with another way to get better fuel economy. Simply by being smaller and lighter, smaller vehicles can significantly reduce fuel use and related emissions.
We are launching more small cars to provide more fuel-efficient options. For example:
We have loaded these smaller vehicles with features and options commonly found on larger or luxury vehicles to make them attractive, thus encouraging customers to choose more fuel-efficient cars and trucks.
All of these smaller vehicles illustrate Ford’s actions to provide consumers with a wider range of fuel-efficient options, as well as our efforts to leverage the best of our global products to offer new choices to customers in all of our regions worldwide.
© 2014 Ford Motor Company