jump to search

Climate Change and the Environment

Life Cycle Analysis

We use a life cycle approach to understand, assess and reduce the adverse impacts of our products. Life cycle analysis considers the materials and energy use and emissions generated over the entire life cycle of our products from cradle to grave, including raw material acquisition, material production, product manufacture, product use, product maintenance, material and component recycling and recovery, and disposal at end of life. For vehicles, this includes the environmental burdens associated with mining ores, producing materials (e.g., steel, aluminum, brass, copper, plastics, etc.), fabricating them into parts, assembling the parts into a vehicle, operating the vehicle over its entire lifetime, producing fuel for the vehicle, maintaining the vehicle and finally, dismantling the vehicle at the end of its life. We use the knowledge gained from this kind of analysis to help us minimize negative impacts up front in product design decisions and to balance environmental, social and economic aspects in our product development process.

We are incorporating life cycle assessment (LCA) in different ways across our business functions. For example, our research teams are using LCA to filter and prioritize projects, and engineers are using LCA to help select one material or design alternative over another. We are also seeing increased use of LCA throughout the industry. For example, environmental advocates are performing their own LCAs in parallel with ours. These external analyses, which often use a different set of assumptions about life cycle impacts, sometimes confirm and sometimes challenge our findings. We will continue to develop and implement a portfolio of LCA tools internally. Furthermore, we will continue to work with other LCA experts to agree on standard methodologies and assumptions to facilitate credible life cycle comparisons.

As we continue expanding our product portfolio from vehicles powered by traditional internal combustion engines running on petroleum-based gasoline or diesel to a wider range of powertrains and fuels, life cycle analysis becomes increasingly important and complex. Therefore, we are increasing our use of life cycle analysis to understand the relative impacts and benefits of alternative powertrains such as electrified vehicles and alternative fuels including electricity and compressed natural gas. We are also using these analyses to help customers understand and choose among the wide range of more sustainable vehicles available in today’s marketplace.

We are working to improve the life cycle sustainability of our products and operations across our value chain. Among our product sustainability efforts, we are increasing our use of sustainable materials and eliminating undesirable materials such as heavy metals and substances that are known to be common allergens. We are also working to reduce greenhouse gases and other emissions from our facilities and vehicles by developing cleaner and more energy-efficient production processes, improving the efficiency of our packaging and transportation logistics and introducing cleaner and more fuel-efficient vehicles. Downstream in our value chain, we are working with drivers to educate them on ways to increase fuel economy and reduce vehicle emissions – for example, through driver interface technologies and our eco-driving program. Upstream, we are working with our suppliers to increase the sustainability of our products throughout the supply chain.

The remainder of this section focuses on how we are using life cycle analyses to quantify the environmental impacts of our products and how we are applying that knowledge to improve product development decisions and help customers choose more sustainable products.