Sustainability Report 2013/14
Climate Change and the Environment
We are collaborating with consumers, municipalities, utilities, and other supporting industries to develop an “electric vehicle ecosystem” that can support and enhance the operation of EVs and help deliver greater benefits to customers and the environment. For example, we are working with utilities and municipalities to address impacts of EVs on the electrical grid. We are also working with other industry partners to maximize the efficiency and benefits of charging EVs for vehicle owners.
If EVs are charged during times of peak electricity demand, they may stress the current grid and require the construction of additional electricity supply. Furthermore, charging vehicles during peak demand would significantly reduce the operating cost benefits expected from electric vehicles. “Smart grid” technology that allows communication between recharging vehicles and the electrical grid provides a key opportunity to maximize recharging efficiency and minimize stress to the grid. Automakers and utilities must continue to work together to develop this “smart” vehicle-to-grid communication system. Overcoming these challenges will require significant collaboration between automakers, electric vehicle supply equipment manufacturers, electric utilities, regulatory agencies and legislators.
Because utilities and automakers have not had to work together in the past, effective collaboration requires developing new relationships and learning about each other’s business and regulatory challenges. For example, utilities and automakers have very different business models: utilities operate regionally and have little to no direct competition within their markets, while automakers operate and compete globally. Furthermore, automakers are primarily regulated at the national level, while utilities face more local and state regulations, which increases the difficulty of establishing a national strategy for vehicle-to-grid interaction. It will be important for automakers and utilities to understand and address these kinds of differences as they work together on vehicle electrification issues.
Initially, much of our work with utilities was focused on demonstration and testing projects to help develop the best path forward for large scale deployment of plug-in vehicles. From 2007 to 2012, Ford worked with the Electric Power Research Institute (EPRI) and several utilities on a U.S. Department of Energy funded project to assess the performance and charging options for plug-in hybrid electric vehicles (PHEVs). The projects included testing PHEVs in over 800,000 miles of real-world driving and conducting vehicle-to-grid connectivity testing with “smart meter” technology. Lessons learned from this testing, as well as from the entire demonstration, helped support the production introduction of our two plug-in hybrid electric vehicles: the Ford C‑MAX Energi and the Ford Fusion Energi.
We are continuing this demonstration and testing work in Europe. In Germany, Ford is working with 12 other partners on the colognE-mobil program, using a fleet of 66 electrified vehicles – including Focus Electrics and C‑MAX Energi plug-in hybrids – to conduct road testing. The partners are examining further aspects around e-mobility in the area of Cologne, integrating regional and supra-regional traffic and public transport. The goal of this project, is to examine interlaced and marketable solutions for electrically powered vehicles as well as the appropriate charging infrastructure in the Rhine Ruhr region. In addition to Ford, the partners include a local energy provider, a solar energy company, public transport providers, as well as a university and research agencies. This program is part of a much larger research effort in several German cities that is partly funded by the German government and involves multiple automakers, utility companies, universities and technology partners.
In the U.S., we are working with utilities, municipalities and states across the country to develop and facilitate the use of EV implementation best practices. For example, in 2013, we joined EV-related collaborative in California, Oregon, and Florida. These collaboratives include representatives from local government, utilities, automakers, and other industry players who are working to implement EVs. Some of the key issues we are working on with local utilities and municipalities include the following:
We are working on these issues in a variety of ways, including with utilities and municipalities in key EV markets across the U.S. We are also serving in a formal advisory role to utilities in several states. Ford is also an active member of the Electric Drive Transportation Association, an industry group that is working to implement EVs in the U.S. And, we are testifying before state legislatures around the country to endorse legislation that will facilitate the successful implementation of EVs.
Our collaborations with utilities and municipalities are yielding key lessons that we are incorporating into our continued efforts to make electrified vehicles successful in the real world. Some of the key learnings so far include the following:
We are also working to develop common charging technology for electric vehicles so that all electric vehicles will be able to use a common plug-in charging system for both AC and DC fast charging. In North America, the Society of Automotive Engineers, with Ford’s participation, successfully developed and approved a standard charge connector and communication protocol, enabling all plug-in vehicles to use common charge points. This will be a key enabler for adoption in North America; the same connector is under consideration in other global markets.
As part of our effort to expand EV charging infrastructure, we signed onto the U.S. Department of Energy’s pledge to increase vehicle charging infrastructure available in workplaces across the country in January 2013. The Workplace Charging Challenge is a collaborative effort to increase the number of U.S. employers offering workplace charging by tenfold in the next five years. As part of this program we are installing 180 electric vehicle charging stations at nearly every Ford facility – including company offices, product development campuses and manufacturing facilities – in the U.S. and Canada throughout 2014. Our employees will be able to charge the all-electric Focus Electric and the Fusion Energi and C‑MAX Energi PHEVs at the charge stations to increase the number of all-electric miles driven. The service will initially be free to employees for the first four hours of each day. Our workplace charger installation is different from other automotive companies’ because the chargers will be networked together. As a result, Ford will be able to gather information on electrified vehicle use, such as the number of hours vehicles are charging and the amount of CO2 reduced. Ford will work with GE as its network provider and supplier of electric vehicle charging stations.
The continued adoption of plug-in vehicles that share the same energy source (electricity) as the home creates a unique convergence between the transportation and residential sectors. In 2013 we launched the MyEnergi Lifestyle project to demonstrate how plug-in vehicle technology can be applied in conjunction with efficient household appliances and renewable energy generation for an energy- and money-saving lifestyle.
The Ford-led project, which currently includes Whirlpool, Eaton, Infineon, SunPower and the Georgia Institute of Technology, shows that more efficient and coordinated use of home electricity for appliances and electric vehicles can, on an annual basis, reduce a home’s electricity use by up to 55 percent, reduce users’ electricity bills by up to 60 percent, and reduce electricity-based home carbon dioxide emissions by up to 56 percent.
Initially, these results were based on computer simulation of an average American home developed in partnership with the Georgia Institute of Technology. The model compared two scenarios: (1) an average home with appliances from 1995, two gasoline vehicles with a fuel economy of 25 miles per gallon each, no solar power, and no intentional off-peak electricity usage, and (2) a home with 5 kW of SunPower solar panels installed on the roof, one gasoline vehicle replaced by a Ford Focus Electric, all appliances replaced by 2012 Whirlpool appliances (including refrigerator, hot water heater, dishwasher and clothes washer/dryer), and a shift in home energy usage (including EV charging) to take advantage of time-of-use (Value Charging) reduced rates.
Over the course of 2013, these model-based results were confirmed in the real world by families participating in this program. For example, one participating family realized more than $1,200 saved in annual fuel costs with their C‑MAX Energi. They expect to save more than $300 annually from their new solar panel system and the system offsets more than 70 percent of the energy used in their home. They have also seen a more than 25 percent reduction in energy costs and CO2 due to the installation of their new energy-efficient Whirlpool refrigerator.
In 2014, we upgraded the program to include battery storage technology to store power generated by solar panels or other renewable energy systems.
These improvements would be hugely significant if implemented on a broader scale. If every home in the U.S. were to implement these energy-saving technologies, it would be equivalent to eliminating the electricity usage of more than 32 million homes (or all the homes in California, New York state and Texas combined). For more information on this project please see myenergilifestyle.com
New technology is enabling American families to reduce their electricity bills and CO2 footprint by integrating a plug-in vehicle, energy-efficient appliances, renewable energy sources and cloud computing that takes advantage of lower off-peak electricity rates.
If implemented in every home in the U.S., these technologies would save the equivalent of the electricity usage of 32 million homes, or approximately the total number of homes in California, New York, and Texas combined.
* Comparing 1995 appliances and a 25 mpg vehicle to 2012 appliances and a Ford C‑MAX Energi plug-in hybrid vehicle with value charging.
© 2014 Ford Motor Company