jump to search

Climate Change and the Environment

Battery Technologies

Ford’s Approach to Advanced Technology Batteries

All of Ford’s newest electrified products use lithium-ion batteries, which offer a number of advantages over the nickel-metal-hydride batteries we used in the past. For example, they are generally 25 to 30 percent smaller and 50 percent lighter, making them easier to package in a vehicle.

The Focus Electric is powered by a lithium-ion battery system that utilizes cooled and heated liquid to regulate battery temperature, extend battery life and maximize driving range. The innovative thermal management technology helps the Focus Electric operate efficiently in a range of ambient temperatures. Advanced thermal management of lithium-ion battery systems is critical to the success of pure electric vehicles, because extreme temperatures can affect performance, reliability and durability.

We continue to research and develop improved battery technologies to make battery-powered vehicles even more efficient and affordable and allow them to go farther on a single charge. In 2013, we opened a new battery research center with the University of Michigan that allows Ford to collaborate with battery cell manufacturers, suppliers, university researchers and start-ups to test new battery concepts on a small scale that could be replicated for full production.

Ford is also assisting in developing end-of-life recycling infrastructure in the U.S. for nickel-metal-hydride and lithium-ion batteries, both of which are high-voltage batteries. For example, we are providing educational material on battery removal, transportation and recycling, as well as a call center for end-of-life vehicle dismantlers through the End of Life Vehicle Solutions Corporation (ELVS). (The ELVS, of which Ford is a participating member, was created by the automotive industry to promote the industry’s environmental efforts in recyclability, education and outreach, and the proper management of substances of concern.) We are also connecting scrap buyers with dismantlers who have high-voltage batteries to recycle. In addition, Ford is working with DTE Energy to develop stationary energy storage systems from vehicle batteries that have reached the end of their useful life in vehicles. Ford engages with all the parties that handle end-of-life batteries, including customers, local authorities, emergency services (e.g., tow trucks and first responders), dealerships, independent workshops and garages and vehicle recyclers. Customers can recycle their batteries with local recyclers or bring them to any Ford or Lincoln dealer for no-cost recycling.

Supply Chain Issues

As the widespread electrification of automobiles moves closer to reality, a new set of concerns is emerging regarding the environmental and social impacts of extracting and processing key materials needed to make electric vehicles. For example, there are concerns about rare earth metals, which are used in electric motors for vehicles, wind turbines and other advanced technologies; also, a better understanding of mining processes is required.

Significantly accelerating the production of electric vehicles is likely to require the use of much greater quantities of lithium and rare earth metals. Currently, production of these resources is concentrated in a few countries, including Chile, Bolivia and China, which has led to questions about the adequacy of the supply of these resources and the potential for rising and volatile prices as demand puts pressure on existing supplies. In addition, there are concerns about geopolitical risks posed by the limited availability of these materials. Could we be trading dependence on one limited resource (petroleum) for another? Finally, the use of water in the production of these materials needs to be considered.

We take these concerns very seriously. With scientists at the University of Michigan, we have conducted and published a study of lithium availability and demand. We found that there are sufficient resources of lithium to supply a large-scale global fleet of electric vehicles through at least the year 2100.1 We conducted a study of rare earth element availability and demand with scientists at the Massachusetts Institute of Technology. We found that absent efficient reuse and recycling or the development of technologies which use lower amounts of dysprosium (Dy) and neodymium (Nd), following a path consistent with stabilization of atmospheric CO2 at 450 ppm might lead to an increase of approximately 700 percent and 2600 percent in the use of these two elements, respectively, over the next 25 years if their present needs in automotive and other applications are representative of the future needs.2

Ford generally does not purchase raw materials such as lithium and rare earth metals directly – they are purchased by our suppliers (or their suppliers) and provided to us in parts for our vehicles. As described in the Supply Chain section of this report, our contracts with suppliers require compliance with the legal requirements of Ford’s Policy Letter 24: Code of Human Rights, Basic Working Conditions and Corporate Responsibility and the adoption of a certified environmental management system (ISO 14001). We are working in our supply chain to build the capability of our suppliers to provide sound working conditions in their operations. We ask the suppliers we work with to take similar steps with their suppliers. We are also working cooperatively with other automakers to extend this approach through the entire automotive supply chain.

As part of our water strategy, we are working with colleagues at the Georgia Institute of Technology to evaluate the water requirements and impacts of powering vehicles with conventional fuels, biofuels and electricity. This work includes a study of the water requirements of lithium extraction and processing, which, based on our understanding of the extraction of lithium from brines in arid areas, we anticipate will be low.

We will continue to monitor and assess these issues for their potential impact on our electrification strategy and our sustainability commitments.

  1. P. Gruber, P. Medina, S. Kesler, G. Keoleian, M.P. Everson, T.J. Wallington, Global Lithium Availability: A Constraint for Electric Vehicles?, J. Industrial Ecology, 15, 760 (2011).
  2. E. Alonso, A.M. Sherman, T.J. Wallington, M.P. Everson, F.R. Field, R. Roth and R.E. Kirchain, Environ. Sci. Technol., 46, 3604 (2012).

Related links

This Report